Uniqueness criterion for solution of abstract nonlocal Cauchy problem

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and uniqueness of positive and nondecreasing solution for nonlocal fractional boundary value problem

In this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form $D_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0

متن کامل

existence and uniqueness of positive and nondecreasing solution for nonlocal fractional boundary value problem

in this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form d_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0x(0)= x'(0)=0, x'(1)=beta x(xi), where $d_{0^{+}}^{alpha}$ denotes the standard riemann-liouville fractional derivative, 0an illustrative example is also presented.

متن کامل

Unconditional Uniqueness of Solution for the Cauchy Problem of the Nonlinear Schrödinger Equation

where λ ∈ C and T > 0. Let α > 0 and s ≥ 0 be specified later, and let u0 ∈ H. Suppose that u ∈ C([0, T ];H) with (2) and u satisfies equation (1) in D0((0, T )× R), that is, in the distribution sense. We briefly recall known results on the uniqueness of solution for (1)-(2). In [3], Ginibre and Velo prove that if s = 1 and α < 4/(n− 2), the solution is unique. In [2], Cazenave and Weissler sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics and Stochastic Analysis

سال: 1993

ISSN: 1048-9533,1687-2177

DOI: 10.1155/s104895339300005x